Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons.

نویسندگان

  • S R Williams
  • G J Stuart
چکیده

1. Electrophysiological recordings and pharmacological manipulations were used to investigate the mechanisms underlying the generation of action potential burst firing and its postsynaptic consequences in visually identified rat layer 5 pyramidal neurons in vitro. 2. Based upon repetitive firing properties and subthreshold membrane characteristics, layer 5 pyramidal neurons were separated into three classes: regular firing and weak and strong intrinsically burst firing. 3. High frequency (330 +/- 10 Hz) action potential burst firing was abolished or greatly weakened by the removal of Ca2+ (n = 5) from, or by the addition of the Ca2+ channel antagonist Ni2+ (250-500 microm; n = 8) to, the perfusion medium. 4. The blockade of apical dendritic sodium channels by the local dendritic application of TTX (100 nM; n = 5) abolished or greatly weakened action potential burst firing, as did the local apical dendritic application of Ni2+ (1 mM; n = 5). 5. Apical dendritic depolarisation resulted in low frequency (157 +/- 26 Hz; n = 6) action potential burst firing in regular firing neurons, as classified by somatic current injection. The intensity of action potential burst discharges in intrinsically burst firing neurons was facilitated by dendritic depolarisation (n = 11). 6. Action potential amplitude decreased throughout a burst when recorded somatically, suggesting that later action potentials may fail to propagate axonally. Axonal recordings demonstrated that each action potential in a burst is axonally initiated and that no decrement in action potential amplitude is apparent in the axon > 30 microm from the soma. 7. Paired recordings (n = 16) from synaptically coupled neurons indicated that each action potential in a burst could cause transmitter release. EPSPs or EPSCs evoked by a presynaptic burst of action potentials showed use-dependent synaptic depression. 8. A postsynaptic, TTX-sensitive voltage-dependent amplification process ensured that later EPSPs in a burst were amplified when generated from membrane potentials positive to -60 mV, providing a postsynaptic mechanism that counteracts use-dependent depression at synapses between layer 5 pyramidal neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Encoding and decoding of dendritic excitation during active states in pyramidal neurons.

Neocortical neurons spontaneously fire action potentials during active network states; how are dendritic synaptic inputs integrated into the ongoing action potential output pattern of neurons? Here, the efficacy of barrages of simulated EPSPs generated at known dendritic sites on the rate and pattern of ongoing action potential firing is determined using multisite whole-cell recording technique...

متن کامل

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons.

Pyramidal cells in the mammalian neocortex can emit action potentials either as series of individual spikes or as distinct clusters of high-frequency bursts. However, why two different firing modes exist is largely unknown. In this study, we report that in layer V pyramidal cells of the rat somatosensory cortex, in vitro associations of EPSPs with spike bursts delayed by +10 msec led to long-te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 521 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999